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I like the way the [Gri13] summarises the goals of theory.

The fundamental problem electrodynamics hopes to solve is this: We have some electric
charges, q1, q2, q3, ... (source charges); what force do they exert on another charge, Q (test
charge)? The positions of the source charges are given (as functions of time); the trajectory
of the test particle is to be calculated.

He starts also with one axiom or experimental observation ”the principle of superposition” that is the
total force on the test charge is simply the sum of the forces exerted by each of the source charges,
there is no interaction. The force on Q from q

depends on the separation distance r between the charges, it also depends on both their
velocities and on the acceleration of q. Moreover, it is not the position, velocity, and
acceleration of q right now that matter: electromagnetic “news” travels at the speed of
light, so what concerns Q is the position, velocity, and acceleration q had at some earlier
time, when the message left.

there is a formulation of this in generality, however the goal is to develop some simpler ideas first and
then arrive there.

1 Electrostatics

The first situation to deal with is when the source charges are all stationary. In this situation the
answer is completely known and easy to state, the force on Q at position r1 ∈ R3 exerted by q at
position r2 ∈ R3, then if we denote r = r1 − r2

F =
qQ

|r|2
r̂.
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And thats it. Thats electrostatics. The rest is devloping tools to make solving the equations simpler.
If we have q1, ..., qn source charges each at distance ri from our test charge then the force on our

test charge is

F = Q

(∑
i

qi
r2i

r̂i

)
= QE(r)

the quantity E(r) doesnt depend on the size of the test charge, but only the position. At each point
in R3 it assigns another vector in R3 and so E is a vector field. The most obvious interpretation is
that this vector field is the force per unit charge that would be exerted on a test charge at the point.

One thing that can help solve for this field is the differential or integral equations given by the
divergence and curl of this vector field. The first is ”Gausses law” which states that E must satisfy
for any enclosed surface S ∫

S

E · n̂Sds = Qenc

where Qenc is the total charge enclosed by the surface. Recall that n̂S is the normal vector to the
surface, as a function of s. This can be very useful when the magnitude of the force is constant through
the surface, in which case it can be taken out of the integral.

Another thing that can be shown is that the the line integral along any closed path is zero and
hence the curl of the vector field is zero

∇× E = 0

It is a theorem of vector calculus that any so called ”conservative” vector field is the derivative of a
scalar field, called the potential, hence there exists some V : R3 → R such that

E = ∇V

Note that since E is what we care about V is only defined up to a constant. The point of introducing
V is that if we consider a charge that is not point like, as say an approximation to larger bodies, then
its charge is described by a charge density ρ : R3 → R and the potential satisfies

∇2V = ρ

The relations between these fundamental quantites E, ρ, V are summarised by the diagram

2 Magnets

Here the field concept becomes a little more real. Magnetism or magnetic fields feel like a much more
intrinsically field like object. The reason for this is because of the experimental fact that all magnetic
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fields arise as the motion of electric charge or fields (even in rocks it is the motion of the electrons in
their orbits). If we are given an already existent magnetic field, that is a vector field B : R3 → R3,
then it exerts a force on a charged particle moving at velocity v with charge Q at point r ∈ R3 given
by

F = Q(v ×B(r))

That is the force is the magnitude of the magnetic field scaled by the charge and in the direction of
the ”right hand rule”, that is perpendicular to the direction of motion.

If we have a charge density that is in motion then the current density is given by

J = ρv

where v is the velocity vector (field) of the charge density (fluid). If this charge density is moving in
a given magnetic field then its force experienced is

F =

∫
J ×Bdr

I guess; it is not clear. This current density satisfies some differential equations, that we probably
wont write down.

2.1 Magnostatics

So a moving charge in a magnetic field experiences as force but, a moving charge also creates a magnetic
field. The shape and size of this field is more complicated than determining the force on a test particle.
Steady currents produce constant magnetic fields. This is the content of magnostatics. In this context
the magnetic field is described by the Biot-Savart law when the current is along a line

B(r) =

∫
J × r̂

|r|2
dl

where l is the path of the flow of the line current. Note that the superposition principle applies to
magnetic fields as well, so it is sufficient to determine those coming from single wires and then add
them up, or in the case of an area to take an integral (one presumes). Thus to some extent this
provides the full answer (at least for steady currents). The general case for volume currents is indeed
just

B(r) =

∫
J(r′)× r̂

|r|2
dr′

Here recal that the bold r is the difference r − r′ and we integrate over r′, that is over all space (by
fubinis theorem this is exactly as we described).

For steady state currents one can compute the curl of this B above as get that

∇×B = J

which is called Ampreres law. Its divergence can also be shown to be zero ∇·B = 0. By vector calculus
this implies that B is the divergence of a vector potential A, that is there exists an A such that

B = ∇×A

This A is only defined up to the addition of a function with zero curl, we use this to normalise A to have
zero divergence. ”Since magnetic forces do no work, A does not admit a simple physical interpretation
in terms of potential energy per unit charge”. Griffiths summarises
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3 Maxwells Equations

Finally we need to abandon the static assumptions. The key is that a changing magnetic field produces
an electric field and vice versa. Thus we amend the electrostatic and magnostatic differential equations
of zero div and curl to contain terms from the other. To make this explicit we have the following set
of differential equations

∇ · E = ρ, ∇ ·B = 0

∇× E =
−∂B

∂t
, ∇×B = J +

∂E

∂t

which tell you how to find the fields from some arrangement of charges (they depend on ρ and J) and
the “force law” which tells you how to find the force on charges given the fields

F = q(E + v ×B).

Thus the original question can be answered, we have the initial source charges that are possibly
moving around in some given way, the first set of equations tells us the magnetic and electric fields
they produce. Then when we introduce our test particle the second equation tells us its motion, using
Newtons second law.

Remark. [Gri13, 8.2.1] points out that Newtons third law is incompatable with electrodynamics. It
is with electrostatics.

Remark. Landau and Lifshitz gives an action formulation of electrodynamics, so this is not the only
formulation. It is not clear to what extent these equations are either necissary or sufficient, however
they are by experimental reasons both I guess (in a paradigm which means neither).

Remark. We are assuming that like there is a single ”test” particle and everything else is ”nailed
down”. But this is never the case. Thus nothing in these books tells you how to really describe even a
two body system where the two particles are interacting with one another. I guess this is a very hard
problem and these methods provide good approximations for large experiments where the aparatus is
”nailed down” by much larger forces. On the other hand wikipedias two body problem page has exact
solutions in simply regimes, but its methods are to reduce to one body problems, so I guess this also
furnishes the solution in that case too.
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Remark. It is not clear from these equations that we are taking into account that the information
is travelling at the speed of light.

4 Properties of the Field

Maxwells equations entail that charge is not just globaly conserved, but also locally. This is the idea
that if the charge in a bounded region changes then that amount of charge must have passed through
the bounding surface. This is mathematically stated as

∂ρ

∂t
= −∇ · J

4.1 Energy

If we have a configuration of stationary charges then the work required to move a charge Q from point
A to point B is

W =

∫ B

A

F · dℓ = −Q

∫ B

A

E · dℓ = Q[V (B)− V (A)]

the integral along the path taken. For a volume charge density the amount of work required to assemble
the ”infinitesimal” charges into a given density ρ is

W =

∫
ρV dτ

where τ is integrated over all space (if no density is at some point then it doesnt contribute to the
integral and therefore the work). Using Maxwells equations we can get that this is

W =

∫
(E · E)dτ

where E is the field of the assembled charge.
In magnostatics we have a similar analysis that tells us that the work done to produce a current

and therefore produce the magnetic field B is given by

W =

∫
(B ·B)dτ

This establishes a correspondence between energy and fields, namely the energy required to make
some electromagnetic field is given by ∫

E2 +B2dτ

or in other words we can say that the field ”contains”

u = E2 +B2

energy per unit volume. This quanity of energy stored in the field, by its creation, also has a conserva-
tion law. If we define S = E ×B as “the energy per unit time per unit area transported by the field”,
then we have that

∂u

∂t
= −∇ · S

4.2 Momentum

A similar analysis can be done with respect to momentum. The gist is that you can calculuate the
total force on a charge in some region, then using newtons second law F = p′(t) you get an expression
for the momentum. One of the terms then is interpreted as the momentum of the field itself, the other
of the particules in the field. This is the quantity that is conserved.
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4.3 Waves

Maxwells DE’s in a vacume, that is no charges present simplify to a set of coupled first order equations.
They can be decopled to give a set of second order equations namely that

∇2E =
∂2E

∂t2
, ∇2B =

∂2B

∂t2

Thus the component vectors of E and B must satisfy these equations. The solutions of this DE are
classically known and are given by waves. Note that the logic here is that if you satisfy Maxwells
equations then you satisfy the wave equations (above) and therefore are a wave. It is not the case that
any wave is a solution to Maxwells equations. In particular all solutions must be transverse waves and
they must propogate at a given speed, that is the speed of light. We have systematically been ignoring
the constants in these equations but it is the case that there are two electromagnetic constants ϵ, µ
that are measured by moving charges near each other. Then it is miraculous that 1/

√
ϵµ = c the speed

of light. Finally the DE above implies that the speed of the wave that it describes is given by 1/
√
ϵµ.

Remark. At this point it is still not clear that there are actually non-trivial solutions allowed by
Maxwells equations, but it is easy to check that a transverse wave would satisfy all of them. Thus the
converse to the logic above can be checked explicitly.

Remark. Here the speed of the wave is given by the solution of the DE which is controlled by E and
B. In media these change and therefore the speed also changes. Therefore it is a logical consequence
of this setup that EM waves will physically slow down in matter.

5 The General Solution

In general we do not have that E is curl free and therefore our definition of V from electrostatics does
not make sense. Recalling that B is always div free we have that the magnetic potential A provides
the necissary adjustment to E, that is we have that

∇×
(
E
∂A

∂t

)
= 0.

Thus we have that there is some scalar field, which we call V , whose gradient is E+ ∂A
∂t . Giffiths points

out that solving in terms of potentials then entails finding four functions, the three components of A
and the one of V . The potentials however are not uniquely defined, that is many potentials will result
in the required fields. Fixing certain conditions on the potentials is computationally useful and this is
done while finding the general solution, which is

E(r, t) =

∫
ρ(r′, tr)

r2
r̂+

ρ̇(r′, tr)

cr
r̂− J̇(r′, tr)

c2r
r̂ dr′

B(r, t) =

∫ [
J(r′, tr)

r2
+

J̇(r′, tr)

cr

]
× r̂ dr′

Here we have that
tr ..= t− r

c
.

This is called the retarded time. Recall that r = |r − r′|. This is capturing the fact that the EM
information is traveling only at the speed of light. Grifiths proof that this time retardation is necissary
is that the potentials in the integrals satisfy Maxwells equations and the DE;s derived from them. This
strikes me as a sufficiency proof. I didnt inspect the logic carefully but I guess it would be in principle
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possible to find if each of the steps were actually iff, that is satisfy the equation iff a solution and a
solution iff using the retarded time. Right now, or as presnted the logic is that this form implies a
solution to some DE’s that were derived from Maxwells.

Griffiths writes

(These) are the (causal) solutions to Maxwell’s equations. For some reason, they do not
seem to have been published until quite recently the earliest explicit statement of which I
am aware was by Oleg Jefimenko, in 1966. In practice Jefimenko’s equations are of limited
utility, since it is typically easier to calculate the retarded potentials and differentiate
them, rather than going directly to the fields. Nevertheless, they provide a satisfying sense
of closure to the theory.
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